Extensions 1→N→G→Q→1 with N=C24 and Q=C2xC6

Direct product G=NxQ with N=C24 and Q=C2xC6
dρLabelID
C25xC6192C2^5xC6192,1543

Semidirect products G=N:Q with N=C24 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
C24:(C2xC6) = C24:A4φ: C2xC6/C1C2xC6 ⊆ Aut C241612+C2^4:(C2xC6)192,1009
C24:2(C2xC6) = C2xC24:C6φ: C2xC6/C2C6 ⊆ Aut C24126+C2^4:2(C2xC6)192,1000
C24:3(C2xC6) = C2xD4xA4φ: C2xC6/C2C6 ⊆ Aut C2424C2^4:3(C2xC6)192,1497
C24:4(C2xC6) = C3xC2wrC22φ: C2xC6/C3C22 ⊆ Aut C24244C2^4:4(C2xC6)192,890
C24:5(C2xC6) = C3xC23:3D4φ: C2xC6/C3C22 ⊆ Aut C2448C2^4:5(C2xC6)192,1423
C24:6(C2xC6) = C3xD42φ: C2xC6/C3C22 ⊆ Aut C2448C2^4:6(C2xC6)192,1434
C24:7(C2xC6) = C3xC24:C22φ: C2xC6/C3C22 ⊆ Aut C2448C2^4:7(C2xC6)192,1450
C24:8(C2xC6) = C6x2+ 1+4φ: C2xC6/C3C22 ⊆ Aut C2448C2^4:8(C2xC6)192,1534
C24:9(C2xC6) = A4xC24φ: C2xC6/C22C3 ⊆ Aut C2448C2^4:9(C2xC6)192,1539
C24:10(C2xC6) = C22xC22:A4φ: C2xC6/C22C3 ⊆ Aut C2412C2^4:10(C2xC6)192,1540
C24:11(C2xC6) = C6xC22wrC2φ: C2xC6/C6C2 ⊆ Aut C2448C2^4:11(C2xC6)192,1410
C24:12(C2xC6) = D4xC22xC6φ: C2xC6/C6C2 ⊆ Aut C2496C2^4:12(C2xC6)192,1531

Non-split extensions G=N.Q with N=C24 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
C24.(C2xC6) = A4xC4oD4φ: C2xC6/C2C6 ⊆ Aut C24246C2^4.(C2xC6)192,1501
C24.2(C2xC6) = C3xC23.9D4φ: C2xC6/C3C22 ⊆ Aut C2448C2^4.2(C2xC6)192,148
C24.3(C2xC6) = C3xC24.C22φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.3(C2xC6)192,821
C24.4(C2xC6) = C3xC24.3C22φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.4(C2xC6)192,823
C24.5(C2xC6) = C3xC23:2D4φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.5(C2xC6)192,825
C24.6(C2xC6) = C3xC23:Q8φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.6(C2xC6)192,826
C24.7(C2xC6) = C3xC23.10D4φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.7(C2xC6)192,827
C24.8(C2xC6) = C3xC23.Q8φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.8(C2xC6)192,829
C24.9(C2xC6) = C3xC23.11D4φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.9(C2xC6)192,830
C24.10(C2xC6) = C3xC23.4Q8φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.10(C2xC6)192,832
C24.11(C2xC6) = C6xC23:C4φ: C2xC6/C3C22 ⊆ Aut C2448C2^4.11(C2xC6)192,842
C24.12(C2xC6) = C3xC22.11C24φ: C2xC6/C3C22 ⊆ Aut C2448C2^4.12(C2xC6)192,1407
C24.13(C2xC6) = C6xC4:D4φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.13(C2xC6)192,1411
C24.14(C2xC6) = C6xC4.4D4φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.14(C2xC6)192,1415
C24.15(C2xC6) = C6xC42:2C2φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.15(C2xC6)192,1417
C24.16(C2xC6) = C6xC4:1D4φ: C2xC6/C3C22 ⊆ Aut C2496C2^4.16(C2xC6)192,1419
C24.17(C2xC6) = C3xC22.29C24φ: C2xC6/C3C22 ⊆ Aut C2448C2^4.17(C2xC6)192,1424
C24.18(C2xC6) = C3xC22.32C24φ: C2xC6/C3C22 ⊆ Aut C2448C2^4.18(C2xC6)192,1427
C24.19(C2xC6) = C3xC23:2Q8φ: C2xC6/C3C22 ⊆ Aut C2448C2^4.19(C2xC6)192,1432
C24.20(C2xC6) = C3xD4:5D4φ: C2xC6/C3C22 ⊆ Aut C2448C2^4.20(C2xC6)192,1435
C24.21(C2xC6) = C3xC22.45C24φ: C2xC6/C3C22 ⊆ Aut C2448C2^4.21(C2xC6)192,1440
C24.22(C2xC6) = C3xC22.54C24φ: C2xC6/C3C22 ⊆ Aut C2448C2^4.22(C2xC6)192,1449
C24.23(C2xC6) = A4xC42φ: C2xC6/C22C3 ⊆ Aut C2448C2^4.23(C2xC6)192,993
C24.24(C2xC6) = A4xC22:C4φ: C2xC6/C22C3 ⊆ Aut C2424C2^4.24(C2xC6)192,994
C24.25(C2xC6) = A4xC4:C4φ: C2xC6/C22C3 ⊆ Aut C2448C2^4.25(C2xC6)192,995
C24.26(C2xC6) = A4xC22xC4φ: C2xC6/C22C3 ⊆ Aut C2448C2^4.26(C2xC6)192,1496
C24.27(C2xC6) = C2xQ8xA4φ: C2xC6/C22C3 ⊆ Aut C2448C2^4.27(C2xC6)192,1499
C24.28(C2xC6) = C12xC22:C4φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.28(C2xC6)192,810
C24.29(C2xC6) = C3xC24:3C4φ: C2xC6/C6C2 ⊆ Aut C2448C2^4.29(C2xC6)192,812
C24.30(C2xC6) = C3xC23.7Q8φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.30(C2xC6)192,813
C24.31(C2xC6) = C3xC23.34D4φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.31(C2xC6)192,814
C24.32(C2xC6) = C3xC23.8Q8φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.32(C2xC6)192,818
C24.33(C2xC6) = C3xC23.23D4φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.33(C2xC6)192,819
C24.34(C2xC6) = C2xC6xC22:C4φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.34(C2xC6)192,1401
C24.35(C2xC6) = C6xC42:C2φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.35(C2xC6)192,1403
C24.36(C2xC6) = D4xC2xC12φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.36(C2xC6)192,1404
C24.37(C2xC6) = C6xC22:Q8φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.37(C2xC6)192,1412
C24.38(C2xC6) = C6xC22.D4φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.38(C2xC6)192,1413
C24.39(C2xC6) = C3xC22.19C24φ: C2xC6/C6C2 ⊆ Aut C2448C2^4.39(C2xC6)192,1414
C24.40(C2xC6) = C2xC6xC4oD4φ: C2xC6/C6C2 ⊆ Aut C2496C2^4.40(C2xC6)192,1533
C24.41(C2xC6) = C6xC2.C42central extension (φ=1)192C2^4.41(C2xC6)192,808
C24.42(C2xC6) = C2xC6xC4:C4central extension (φ=1)192C2^4.42(C2xC6)192,1402
C24.43(C2xC6) = Q8xC22xC6central extension (φ=1)192C2^4.43(C2xC6)192,1532

׿
x
:
Z
F
o
wr
Q
<